Search results

Search for "frequency-modulated Kelvin probe force microscopy" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • consisting of many layers and interfaces. The study and the comprehension of the mechanisms that take place at the interfaces is crucial for efficiency improvement. In this work, we apply frequency-modulated Kelvin probe force microscopy under ambient conditions to investigate the capability of this
  • photogenerated carrier distributions. The analysis of the KPFM data was assisted by means of theoretical modelling simulating the energy bands profile and KPFM measurements. Keywords: FM-KPFM; frequency-modulated Kelvin probe force microscopy; III–V multilayer stack; Kelvin probe modelling; KP modelling; SPV
PDF
Album
Full Research Paper
Published 14 Jun 2023

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

  • Tino Wagner,
  • Hannes Beyer,
  • Patrick Reissner,
  • Philipp Mensch,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2015, 6, 2193–2206, doi:10.3762/bjnano.6.225

Graphical Abstract
  • feedback controller for high resolution, frequency modulated Kelvin probe force microscopy. Based on Kalman filtering and stochastic optimal control, our feedback employs a model-driven estimation process, which allows one to integrate sensitivity information from the 2ωm sidebands. In comparison to
  • Kelvin probe force microscopy (FM-KFM) is the method of choice for high resolution measurements of local surface potentials, yet on coarse topographic structures most researchers revert to amplitude modulated lift-mode techniques for better stability. This approach inevitably translates into lower
  • Tino Wagner Hannes Beyer Patrick Reissner Philipp Mensch Heike Riel Bernd Gotsmann Andreas Stemmer Nanotechnology Group, ETH Zürich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland IBM Research — Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland 10.3762/bjnano.6.225 Abstract Frequency modulated
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2015
Other Beilstein-Institut Open Science Activities